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Studies have argued that genetic testing will provide limited information for predicting the probability of common
diseases, because of the incomplete penetrance of genotypes and the low magnitude of associated risks for the
general population. Such studies, however, have usually examined the effect of one gene at time. We argue that
disease prediction for common multifactorial diseases is greatly improved by considering multiple predisposing
genetic and environmental factors concurrently, provided that the model correctly reflects the underlying disease
etiology. We show how likelihood ratios can be used to combine information from several genetic tests to compute
the probability of developing a multifactorial disease. To show how concurrent use of multiple genetic tests improves
the prediction of a multifactorial disease, we compute likelihood ratios by logistic regression with simulated case-
control data for a hypothetical disease influenced by multiple genetic and environmental risk factors. As a practical
example, we also apply this approach to venous thrombosis, a multifactorial disease influenced by multiple genetic
and nongenetic risk factors. Under reasonable conditions, the concurrent use of multiple genetic tests markedly
improves prediction of disease. For example, the concurrent use of a panel of three genetic tests (factor V Leiden,
prothrombin variant G20210A, and protein C deficiency) increases the positive predictive value of testing for venous
thrombosis at least eightfold. Multiplex genetic testing has the potential to improve the clinical validity of predictive
testing for common multifactorial diseases.

Introduction

The rapid pace of genetic discoveries has resulted in ge-
netic tests for many diseases. A key question is whether
genetic tests will be able to predict a healthy person’s
probability of developing a disease, particularly one of
the many common diseases of presumed multifactorial
origin. Some researchers suggest that genetic testing will
be widely used for this purpose in the near future (Bell
1998; Beaudet 1999; Collins 1999; Evans et al. 2001).
Others argue that genetic testing for common diseases
will not be useful in practice, because of the incomplete
penetrance and low magnitude of risks associated with
various genotypes in the population (Holtzman and
Marteau 2000; Vineis et al. 2001).

The latter argument is a useful counterbalance to the
unrealistic expectation that a single genetic test for,
say, cancer or coronary artery disease will revolutionize
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medicine. However, we believe that this position over-
states the intrinsic limitations of genetic testing. The
pitfall of such an argument is that it restricts its scope
to tests that examine a single genetic factor, whereas
simultaneous testing of multiple predisposing alleles is
likely to be the standard for multifactorial diseases
(Beaudet 1999; Evans et al. 2001). In this article, we
show that, if several factors (e.g., genetic loci) play a
role in disease etiology, then, under many conditions,
evaluating such factors concurrently (e.g., through use
of a panel of genetic tests) substantially increases the
predictive value for the disease.

A similar result was reported in a recent theoretic
examination of populations, using simple additive (mul-
tifactorial) models (Pharoah et al. 2002). However, al-
though that finding is of interest, it does not directly
apply to the testing of individual patients. Our approach
examines the practical use of a test panel of genetic
variants with known population frequencies and disease
associations to estimate the probability that a healthy
person will develop the disease. We describe a general
method to generate such probabilities, expand it to in-
clude the effect of environmental factors and interac-
tions, and show how the approach performs using plau-
sible simulated data as well as real data for venous
thrombosis, a common multifactorial disease.
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Methods

We use the likelihood ratio to estimate the posterior
probability of disease that is influenced by many factors.
The likelihood ratio reflects the probability that a patient
with the disease has an observed test result, compared
with the probability that a patient without the disease
has the same result (Sackett 1991). The likelihood ratio
is useful for modeling the contribution of multiple ge-
netic and environmental factors, including interaction
effects. In subsequent sections, we describe the main re-
sults that will be used for calculating the probability of
disease.

Likelihood Ratio

For simplicity, we assume that we are dealing with
multiple disease-susceptibility genes, each of which has
two alleles. A panel of tests will generate a result for
each person, which can be described succinctly by G (g1,
g2, g3, … gn), the vector of test results for the n disease-
susceptibility genes (g1–gn). If for a positive ge-g p 1i

netic test result and for a negative result, theng p 0i

each person who is tested can be associated with a string
(of length n) of 0s and 1s. For a panel of n tests, there
are 2n theoretical combinations of test results (and 2n

subgroups, each with a different combination of test
results, in the population).

If D represents the diseased population and the
—
D

nondiseased population, one can define the likelihood
ratio for any observed value of G as

P(GFD)
LR(G) p , (1)—

P(GFD)

where represents the probability of G given theP(GFD)
presence of disease D and is the probability of

—
P(GFD)

G given the absence of disease D. The likelihood ratio
will be higher for combinations of test results that more
clearly distinguish people with the disease from those
without the disease, thus justifying its frequent use for
clinical screening and diagnostic testing (Sackett 1991;
Wald and Leck 2000).

Typically, the likelihood ratio in equation (1) has been
used to evaluate diagnostic tests by assessing the prob-
ability that a disease is present in people with a positive
test result (Sackett 1991). We show how the likelihood
ratio also can be used to identify people at high risk of
developing a disease. Such information is useful in pre-
vention activities targeting people who are most likely
to develop a disease.

Calculating this likelihood ratio requires recognition
of the fact that genetic tests used to predict multifactorial
disease are not diagnostic tests. High-risk alleles at any

single locus often occur in persons in whom the disease
will never develop, and low-risk alleles often occur in
patients in whom the disease develops. According to the
mutifactorial model, the disease will develop only in peo-
ple whose combined burden of genetic and environ-
mental risk factors exceeds a certain threshold. More-
over, this threshold may vary with age. In the illustration
in this article, we define a single genetic test indicating
increased risk for disease as “allele positive” and a single
genetic test indicating a decreased risk for disease as
“allele negative.”

To grasp the concept of computing likelihood ratios
for a panel of tests, one can begin with the simpler sit-
uation of a single binary test, moving then to a panel of
two tests, then three, etc. For the single binary genetic
test G (1 or 0), the associated likelihood ratio, LR(G),
takes the values LR( ) or LR( ). LR(G p 1 G p 0 G p
) is defined as the likelihood ratio for an allele-positive1

test, and LR( ) is the likelihood ratio for an allele-G p 0
negative test. Appendix A shows calculation of the like-
lihood ratio and other related measures applied in this
context.

As mentioned above, for ge-G p n(g , g , g , … g )1 2 3 n

netic tests, there are 2n combinations of test results in
the population. For example, a panel of two binary
genetic tests could have four possible results, and a
likelihood ratio can be calculated for each: LR(g p1

), LR( ), LR( ),0, g p 0 g p 0, g p 1 g p 1, g p 02 1 2 1 2

and LR( ). If the n genetic tests (g1, g2,g p 1, g p 11 2

g3, … gn), are independent, then the joint probability
of a given result is the product of the individual
probabilities, . TheP(GFD) p P(g FD)P(g FD) … P(g FD)1 2 n

same is true for . It follows immediately that
—

P(GFD)

LR(G) p LR(g )LR(g ) … LR(g ) , (2)1 2 n

where

P(gFD)iLR(g ) p , (i p 1,2, … n) .—i P(gFD)i

Thus, the likelihood ratio for a panel of independent
tests is simply the product of the likelihood ratios of the
individual test results.

When the n genetic tests are not independent, the LR
can still be computed, since, by the rule of conditional
probability,

P(GFD) p P(g Fg , … ,g ,D)P(g Fg , … ,g ,D)1 2 n 2 3 n

… P(g Fg ,D)P(g FD) .n�1 n n

can be calculated in an analogous fashion. The
—

P(GFD)
expression for the likelihood ratio for multiple genetic
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tests that are dependent is more complex but still esti-
mable:

LR(G) p LR(g Fg , … ,g )LR(g Fg , … ,g ) … LR(g ) .1 2 n 2 3 n n

(3)

When several independent genetic tests for a particular
disease are available, one can obtain a combined like-
lihood ratio through use of equation (2). When several
possibly dependent genetic tests exist, one has to use
equation (3) and calculate the conditional probabilities
in order to get a valid combined likelihood ratio.

Likelihood-Ratio Estimation from Logistic Regression

For a binary disease outcome ( ), assuming aD p 0,1
logistic model in the population, we can use logistic re-
gression to calculate the likelihood ratio from a case-
control study conducted in the population:

NCO T ∗ Tln LR(G) p ln � a � bG p a � bG , (4)CC( )NCA

where aCC and b are the intercept term and logistic re-
gression coefficient of the odds of developing the disease,
respectively; NCA is the number of case subjects in the
study sample, NCO is the number of control subjects in
the study sample, and . To es-∗a p a � ln (N /N )CC CO CA

timate LR(G) using logistic regression in a case-control
study, one needs to use the adjusted intercept term, .∗a

Appendix B provides a proof of this use of logistic re-
gression to calculate the likelihood ratio from a case-
control study. Although we use logistic regression to es-
timate the likelihood ratio, one could use other link
functions (e.g., log linear) instead.

Likelihood Ratio with Covariates and Interaction

So far, we have assumed that each gene independently
contributes to the disease and that the population is
homogeneous with respect to test results—that is, the
probability of having an allele-positive or allele-negative
result is the same for every individual. However, such
assumptions may not hold. For example, many common
diseases are age dependent, and the effect of a certain
combination of alleles (and therefore the probability of
disease associated with a particular set of test results)
may differ depending on exposure to environmental or
behavioral factors. In addition, an individual with a
strong family history for a particular disease may be
more likely to develop that disease than another indi-
vidual who has the same combination of test results but
no family history. Interactions among genetic variants
at different loci may also cause dependencies in the re-
sults of the test panel.

In this situation, one can estimate the likelihood ratio
while adjusting for covariates and including interaction
effects. This approach leads to a model with the general
form

NCO ∗ T T Tln LR(G) p ln � a � bG � gX � dW , (5)( )NCA

where X is a vector of covariates and W represents in-
teraction effects of multiple binary genetic tests. Failure
to consider the effects of some covariates—for example,
age as a covariate for an age-dependent disease—may
result in a biased estimate of the likelihood ratio.

The variance of the likelihood ratio can be calculated
by using the standard delta method based on a Taylor
series expansion (see appendix B). The % CI100(1 � a)
of the likelihood ratio can be calculated by

�{ }[ ]exp ln LR(G) � Z Var LR(G) ,1�a/2

where Z1�a/2 is the normal deviate that cuts off ap-
propriate areas in the tails of the standard normal
distribution.

Positive and Negative Predictive Value (Posterior
Probability)

When using a genetic test to predict the development
of a multifactorial disease, we are interested in knowing
the probability that the disease will develop in people
with an allele-positive result, or , and the prob-P(DFG)
ability that the disease will not develop in people with
an allele-negative result, or . is defined

—
P(DFG ) P(DFG)0

as the positive predictive value, or posterior probability,
of disease occurrence, and is defined as the neg-

—
P(DFG )0

ative predictive value. It can be shown that andP(DFG)
are functions of the likelihood ratio and of the

—
P(DFG )0

pretest risk of the disease in the population, P(D):

LR(G)P(D)
P(DFG) p . (6)

[ ]1 � P(D) �LR(G)P(D)

Similarly, the negative predictive value can be expressed
as

1—
P(DFG ) p ,0 P(D)1 � LR(G )0 1�P(D)

where P(D) is the pretest risk of disease or the average
risk of disease in the population and LR(G0) is the like-
lihood ratio of all allele-negative test results (i.e., the
likelihood ratio that all G tests (g1, g2,… gn) take the
value of 0). Therefore, one can convert the pretest risk
of disease, P(D), to a posterior probability of disease
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(positive or negative predictive value) through a set of
estimated likelihood ratios from a case-control study.
Here we use “positive and negative predictive value”
and “posterior probability” interchangeably.

Simulated Data

Using a simulation study, we now illustrate how like-
lihood ratios can generate the probability of developing
disease, on the basis of results from a panel that tests
for disease-susceptibility alleles. We simulated a popu-
lation of one million people and a multifactorial disease
with a background risk of 5% (the order of magnitude
of common multifactorial diseases such as diabetes or
depression). We assume that the risk for developing the
disease is influenced by five biallelic disease-susceptibility
loci (g1, g2, g3, g4, and g5) and one dichotomous envi-
ronmental exposure, with expected relative risks for the
disease of 1.5, 2.0, 2.5, 3.0, 3.5, and 2.0, respectively.
We assume that these gene variants and the environ-
mental exposure are all common in the population: 25%
for g1, 20% for g2, 15% for g3, 10% for g4, 5% for g5,
and 15% for the environmental factor. We also assume
that the environmental exposure and g1 interact multi-
plicatively. Such high frequencies, low associated relative
risks, and interaction effects were chosen as plausible
scenarios for many multifactorial conditions. We ran-
domly selected a sample of 500 case subjects and 500
control subjects from the population. Choosing a 1:1
case-control ratio is not necessary but simplifies the es-
timation of likelihood ratio from equation (4) because

, so that .Tln (N /N ) p 0 ln LR(G) p a � bGCO CA

Nomogram

We use the nomogram (fig. 1) to illustrate the in-
creased ability to predict a multifactorial disease, using
a panel of genetic tests under a range of scenarios. The
nomogram converts the background risk of disease (pre-
test risk of disease, P[D]) to a predicted value (posterior
probability of disease occurring, ), using differentP[DFG]
values of the likelihood ratio LR(G) (Fagan 1975).

Results

For a multifactorial disease with moderate effects of
any single locus (relative risk p 1.5–3.5), any single
allele-positive test has limited ability to predict devel-
opment of the disease (table 1). For example, the like-
lihood ratio for the genetic test for g1 alone was
computed as ln LR(g ) p a � bg p �0.2428 � g #1 1 1

. The likelihood ratio for an individual.7825 p .5397
who is allele positive for g1 is given by exp (.5397) p

. For a disease with an overall risk of 5% in the1.72

population, the probability of developing the disease,
, among people with an allele-positive test resultP(DFG)

for g1 is

P(D)LR(g )1P(DFG) p
1 � P(D) � P(D)LR(g )1

0.05 # 1.72
p p 8.3% .

0.95 � 0.05 # 1.72

The variance of the likelihood ratio was calculated
using equation (B6) from the covariance matrix generated
by the logistic regression analysis as Var [LR(g )] p1

.0.00591 � 0.01955 � 0.01182 p 0.01364
Similarly, we can estimate the likelihood ratio for the

g1 allele-negative test result as exp (�0.2428) p 0.784
and the corresponding probability of not developing the
disease among people with an allele-negative result for
g1, .

—
P(DFG ) p 1/1.0413 p 96.0%0

The simulated data in table 1 show how a panel of
genetic tests improves the positive predictive value un-
der increasingly inclusive scenarios (i.e., testing g1 only;
combined testing of g1 and g2; combined testing of g1,
g2, and g3; and so on). Figure 1 displays these results
on a nomogram that can also be used to take into ac-
count the effect of different pretest risks of disease,
P(D). The posterior probability of disease increases with
the number of informative genetic tests done concur-
rently, with more than a 10-fold increase between a test
for g1 only (posterior probability 8%) and multiple ge-
netic tests and an environmental risk factor (posterior
probability 89%).

For any given test panel, the pretest risk of the disease
in the population also has an important impact on the
predictive value. For example, if the pretest risk of the
disease increases from 5% to 10%, such as may occur
when people with a first-degree relative affected with
the disease are tested, the posterior probability would
increase from 8% to 16% for a single genetic test and
from 89% to ∼94% for the full panel of tests for five
genes and one environmental exposure (fig. 2).

Venous Thrombosis: An Example Using Real Data

In a review article, Seligsohn and Lubetsky (2001)
discussed genetic predisposition to venous thrombosis
and proposed a set of tests for inherited thrombophilia.
Most inherited thrombophilia can be attributed to either
failure to control the generation of thrombin or impaired
neutralization of thrombin. Factor V Leiden (the
Arg506Gln substitution in factor V), the G20210A var-
iant of prothrombin (the G20210A mutation in the 3′

UTR of the prothrombin gene), and deficiencies of pro-
teins C or S are associated with decreased control of
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Figure 1 Power of a panel of genetic tests and exposure on predictability of the common disease (simulated data)

thrombin generation. Deficiency of antithrombin leads
to decreased neutralization of thrombin. Seligsohn and
Lubetsky (2001) pooled 30 studies of genetic suscepti-
bility to venous thrombosis and presented data on the
frequency of various inherited thrombophilias among
healthy subjects and groups of patients with venous
thrombosis.

To demonstrate the likelihood-ratio approach to pre-

dicting the probability of disease development, we first
derive the relevant allele frequencies for factor V Leiden,
the G20210A prothrombin gene variant, and protein C
deficiency among patients with venous thrombosis, using
data from Seligsohn and Lubetsky’s (2001) review (table
2). For factor V Leiden and the G20210A prothrombin
gene variant, we included only white subjects, because
of the very low frequency of these variants among Asians



Table 1

Likelihood Ratios, 95% CIs of Likelihood Ratios, and Posterior Probability of Developing Disease for Single and Multiple Genetic
Susceptibility Tests and an Environmental Exposure

Environmental Exposure/Genetic
Tests and Coefficienta Estimate SE P

Expected
Relative
Risk of

Genotype and
Environmental

Exposure

Expected
Gene

Frequency and
Environmental

Exposure
Prevalence in
Population

(%) LR (95% CI)

Posterior
Probability of

Developing
Diseaseb

(%)

One-gene test:
a �.2428 .0769 .002

1.72 (1.37–2.16) 8.3g1 .7825 .1398 !.0001 1.5 25

a �.1237 .0712 .082
1.61 (1.22–2.13) 7.8g2 .6015 .1591 !.0002 2.0 20

a �.1652 .0704 .019
2.10 (1.55–2.85) 9.9g3 .9062 .1708 !.0001 2.5 15

a �.1456 .0681 .033
2.75 (1.88–4.03) 12.6g4 1.1572 .2062 !.0001 3.0 10

a �.1070 .0661 .106
3.72 (2.21–6.26) 16.4g5 1.4213 .2736 !.0001 3.5 5

Two-gene tests (selected examples):
a �.3879 .0855 !.0001

2.95 (2.07–4.20) 13.4g1 .8151 .1413 !.0001 1.5 25
g2 .6543 .1620 !.0001 2.0 20

a �.4079 .0839 !.0001
3.60 (2.49–5.21) 15.9g1 .7824 .1418 !.0001 1.5 25

g3 .9062 .1732 !.0001 2.5 15

a �.2795 .0777 !.0003
3.26 (2.20–4.84) 14.6g2 .5741 .1614 !.0004 2.0 20

g3 .8868 .1718 !.0001 2.5 15
Three-gene tests (selected examples):

a �.5455 .0921 !.0001
g1 .8174 .1434 !.0001 1.5 25

6.02 (3.79–9.56) 24.1g2 .6333 .1646 !.0001 2.0 20
g3 .8898 .1748 !.0001 2.5 15

g1 .8021 .1416 !.0001 1.5 25
g2 .6904 .1677 !.0001 2.0 20

19.0 (10.5–35.6) 50.0g3 .9407 .1775 !.0001 2.5 15
g4 1.2287 .2134 !.0001 3.0 10

Five-gene tests:
a �.8405 .1031 !.0001
g1 .8502 .1488 !.0001 1.5 25
g2 .6629 .1709 .0001 2.0 20

77.6 (33.2–181.2) 80.3g3 .9501 .1798 !.0001 2.5 15
g4 1.2396 .2160 !.0001 3.0 10
g5 1.4886 .2853 !.0001 3.5 5

Genes and exposure:
a �1.0563 .1121 !.0001
g1 .6866 .1539 !.0001 1.5 25
g2 .7166 .1733 !.0001 2.0 20

151.7 (64.9–354.8) 88.9g3 .9593 .1829 !.0001 2.5 15
g4 1.2103 .2205 !.0001 3.0 10
g5 1.5513 .2888 !.0001 3.5 5
e .9539 .1616 !.0001 2.0 15
a a p Intercept of logistic regression; g1–g5 p coefficients of logistic regression for genetic tests for genes 1–5, respectively; e p coefficient

of logistic regression for a dichotomous environmental exposure variable.
b Values were obtained from equation (6), using simulated data with a 5.0% background risk for the disease.
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Figure 2 Impact of prevalence of disease on posterior probability of disease (simulated data)

and Africans. In this illustration, we treat these meta-
analysis results as a valid estimate of the risk odds ratio,
as would be derived from a well-designed case-control
study. Appendix B provides a proof that a valid estimate
of the likelihood ratio can indeed be obtained from an
well-designed case-control study. We calculated unad-
justed likelihood ratios for each test through use of lo-
gistic regression, assuming an independent effect of each
allele tested. We then converted these results to the pos-

terior probability of developing disease, by the method
described above.

The computation of likelihood ratios using logistic
regression (table 2) is straightforward. For example, the
likelihood ratio for the allele-positive test for factor V
Leiden among healthy subjects and unselected patients
with venous thrombosis is obtained by ln (LR) p
ln (NCO/NCA) � a � b p ln (16,150 /1,142)�2.809 �

, where a and b are intercept term and1.526 p 1.3669
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Table 2

Distribution of Inherited Thrombophilia among Healthy Subjects and Unselected and Selected Patients with
Venous Thrombosis, by Status of Factor V Leiden, the G20210A Prothrombin Gene Mutation, and Protein C
Deficiency

INHERITED

THROMBOPHILIA

NO. OF

LR (95% CI)

POSTERIOR

PROBABILITY OF

DEVELOPING

DISEASE

(%)
Healthy
Subjects Patients

Panel A (healthy subjects and unselected patients):
Factor V Leiden:

� 775 215
3.9 (3.4–4.6) .8

� 15,375 927
G20210A prothrombin gene mutation:

� 11,610 205
2.6 (2.2–3.1) .5

� 322 2,679
Protein C deficiency

� 45 74
12.3 (8.5–17.8) 2.4

� 15,025 1,937
Combined testsa 126.8 20.3

Panel B (healthy subjects and selected patients)b:
Factor V Leiden:

� 775 65
8.4 (6.5–10.8) 1.6

� 15,375 97
G20210A prothrombin gene mutation:

� 11,610 88
5.9 (4.7–7.5) 1.2

� 322 463
Protein C deficiency:

� 45 37
16.2 (10.5–25.0) 3.1

� 15,025 730
Combined testsa 801.8 61.6

NOTE.—Derived from Seligsohn and Lubetsky (2001).
a Likelihood ratios for combined tests were estimated by assuming independence of the tests.
b Patients who met the following criteria were selected: age !50 years, family history of venous thrombosis,

personal history of recurrent thrombotic events, and absence of acquired risk factors except for pregnancy or the
use of oral contraceptives. The estimates of likelihood ratio from the selected patients are likely to be biased because
the case subjects (selected patients) are not comparable to the noncase subjects (healthy subjects).

estimated coefficient of logistic regression. The likeli-
hood ratio is calculated by exponentiating this result,

. The variance of the like-LR p exp (1.3669) p 3.9
lihood ratio is Var (LR) p 0.001144 � 0.007085 �

, and the 95% CI of the likelihood0.00228 p 0.005949
ratio is .�exp (1.3669 � 1.96 0.005949) p (3.37, 4.56)

To estimate the posterior probability for venous
thrombosis (i.e., the probability of developing the dis-
ease, ) using the likelihood ratio, one must knowP[DFG]
the pretest risk of the disease in the general population.
We recognize that the risk for venous thrombosis varies
with age (Ridker et al. 1997) and that it is preferable to
include age as a covariate in the model, estimate age-
specific likelihood ratios, and convert these likelihood
ratios to age-specific posterior probabilities of disease.
However, many studies have estimated the overall in-
cidence of venous thrombosis to be 1.5–2 per 1,000
person-years in the general population (Nordstrom et al.
1992; Hansson et al. 1997; White et al. 1998), and, to
simplify this demonstration, we assume that the pretest

risk of venous thrombosis is 2 per 1,000. We also assume
that the effect of each susceptibility gene is independent
and that all interactive effects are purely multiplicative.

Each genetic test provides limited predictive infor-
mation about the probability of developing venous
thrombosis. The posterior probabilities of disease range
from 0.5% to 3.1% for each test alone. However, the
posterior probabilities of venous thrombosis occurring
increases to 20.3% when estimated with unselected pa-
tients and to 61.6% when estimated with selected pa-
tients, an increase of 18-fold for unselected patients and
120-fold for selected patients.

Discussion

We have shown that using a panel of genetic tests can
substantially improve the ability to predict the risk of
developing a multifactorial disease, compared with using
just one test, providing that the panel includes factors
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that contribute to the disease. The argument is still valid
if the assessment includes not only testing for suscepti-
bility alleles but also information on environmental ex-
posures or other predisposing factors. One can use like-
lihood ratios to integrate such genetic and environmental
assessments into a summary estimate of the risk that a
particular healthy person will develop the disease.

Combining information from multiple risk factors to
predict the probability of disease development is not
new. For example, Gail et al. (1989) used a proportional
hazards model to estimate individual probabilities of
developing breast cancer, on the basis of factors such
as age at menarche, age at first live birth, number of
previous breast biopsies, and number of first-degree rel-
atives with breast cancer. Estimating likelihood ratios
through use of logistic regression with covariates has
been proposed in clinical diagnostic tests (Coughlin et
al. 1992; Simel et al. 1993). A method similar to the
one we propose is used routinely in pregnancy screen-
ing, to estimate the risk of fetal Down syndrome, on
the basis of multiple maternal serum markers, maternal
age, and other factors (Wald and Leck 2000).

We show that an individual patient’s risk of devel-
oping a multifactorial disease can be calculated from
case-control data by means of likelihood ratios esti-
mated using logistic regression. This approach permits
the simultaneous use of information from many differ-
ent genetic tests as well as from environmental risk fac-
tors, age, personal medical history, and family history.
When all such information is taken into account, the
estimated likelihood ratio can easily be converted to the
posterior probability of developing the disease.

The nomogram graphically illustrates the conditions
that improve prediction—namely, increasing the num-
ber of risk factors that are considered and focusing on
groups with a higher background risk for the disease.
For a common disease (affecting �10% of the popu-
lation), a positive test panel associated with a combined
likelihood ratio of 81 would strongly predict the prob-
ability of developing the disease (in excess of 90% pos-
terior probability). A likelihood ratio of this magnitude
can be achieved by using a small panel of disease-sus-
ceptibility alleles with moderate effects or by using
fewer alleles with relatively strong effects. The availa-
bility of multiplex genetic testing by efficient automated
methods (Southern 1996; Pennisi 1999) offers the pros-
pect of assessing dozens or hundreds of alleles simul-
taneously and thereby identifying individuals at very
high risk of developing a particular disease, even if the
contribution of each gene to the risk is small. Focusing
this testing on higher-risk groups, such as people with
a positive family history, can increase the prediction
probabilities even further because of the higher a priori
risk for a disease among people with a positive family
history. For a group whose a priori risk of developing

a disease is 15% instead of 10%, for example, a com-
bined likelihood ratio of 51 (instead of 81) would be
sufficient to reach the same 90% posterior probability
of disease development.

Although our findings indicate that prediction prob-
ability improves when common diseases are examined,
considering multiple genetic risk factors simultaneously
also improves the prediction probability for rarer con-
ditions. For example, in venous thrombosis, which is
relatively uncommon (1.5–2 per 1,000 in the popula-
tion), an appropriately tailored panel of genetic tests
combined with age and other potential risk factors
could achieve a positive predictive value in excess of
90%.

These findings lead us to two considerations. First,
methods based on likelihood ratios can be useful and
effective tools to evaluate the probability of developing
a disease in relation to multiple genetic and environ-
mental factors and their interactions. Second, the ability
of genetic tests to predict multifactorial diseases is not
inherently low but depends on how many factors are
considered and the characteristics of each factor with
respect to population frequency, associated risks, and
interactions. As knowledge of these factors and their
associated parameters improves, so will the ability to
predict the probability of developing diseases. At that
point, the major limiting factor in prediction might be
the background risk in the population (the disease in-
cidence), so that, contrary to some views, common mul-
tifactorial diseases might be more reliably predictable
than conditions that are neither common nor multifac-
torial. This view is supported by the fact that a positive
panel of tests for common alleles and relatively weak
risk factors, when taken as a whole, may be as infor-
mative as testing positive for a single, strong risk factor.

Such considerations are valid to the extent that the
model implicit in the test panel correctly reflects the
underlying etiology of the disease. Thus, valid predic-
tion is predicated upon correctly including relevant gene
variants in the panel and valid exposures in the global
assessment, as well as upon correctly defining the de-
pendencies (e.g., interactions) among gene variants and
environmental factors.

In our illustration, we described and simulated sce-
narios in which all gene variants conferred an increased
risk for disease. The simultaneous presence of genotypes
that confer a lower risk adds complexity to the scenario
but can easily be included in the calculation.

An important consideration in testing for multiple
weak genetic predispositions is the trade-off between pre-
cision of the prediction and the size of the group of people
to whom the prediction applies. The number of people
identified as being at highest risk decreases as the pre-
cision of prediction increases and, generally, as the num-
ber of (independent) component tests increases. A panel
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of n tests, for example, can generate up to 2n combina-
tions of test results, and their distribution in the popu-
lation depends on the population frequencies of the genes
in the panel. When independent loci are assumed, the
proportion of the population with a given combination
of test results is equal to the product of the relative fre-
quency of each component result (allele). Testing is most
predictive for people who carry all of the susceptibility
alleles tested by the panel, but these people will probably
represent only a small proportion of those who eventually
develop the disease. For others, the ability to predict dis-
ease will decrease with the number of “at-risk” alleles
carried. With the rapid advancement of genomic tech-
nology, a large number of genetic tests will likely become
available for some multifactorial diseases. As the number
of genetic tests increases, application of the likelihood-
ratio approach to many different combinations of allele-
positive and allele-negative results would generate a more
or less continuous distribution of posterior probabilities
of disease. Most cases of the disease would occur among
people who are at high risk (as measured by the posterior
probability) (Pharoah et al. 2002). The decision about
the appropriate cutoff point for public health interven-
tions or individual risk factor modifications is a complex
one and will likely depend on the nature of the disease
(e.g., its mortality and morbidity), the effectiveness and
cost of treatment, and the cost-effectiveness of screening
(Bell 1998; Evans et al. 2001; Guttmacher and Collins
2002).

The use of logistic regression to estimate likelihood
ratios permits investigators to include important co-
variates in the model. Age, sex, personal medical history,
and family history frequently influence an individual’s
risk of developing a multifactorial disease. Failure to
take these covariates into account may result in biased
estimates of the likelihood ratios and inaccurate cal-
culation of the posterior probability of disease. The lo-
gistic regression method we propose for estimating like-
lihood ratios assumes a multiplicative relationship of
the risk factors. Additive effects of different genes can
also be considered in this model, with an alternative
parameterization of gene-gene and gene-environment
interaction (Hosmer and Lemeshow 1992; Botto and
Khoury 2001). One of the shortcomings of a multipli-

cative model is that unrealistically high risk estimates
may be obtained when many factors are considered si-
multaneously. The investigators must be cautious when
specifying their models with multiple genetic and risk
factors and when interpreting results from such models.

Our models assume a homogeneous population with
fixed frequencies of alleles and background (pretest) dis-
ease risk. In fact, a population may actually be com-
posed of subpopulations, such as racial groups, with
different allele frequencies and background risks of dis-
ease. Under these circumstances, a stratified analysis can
be used to generate valid estimates of likelihood ratios
by logistic regression.

We have focused on the clinical validity of genetic tests
in this study. Clinical validity, which measures how well
an allele-positive result identifies people who will develop
the disease and how well an allele-negative result iden-
tifies those who will not develop the disease, is an im-
portant criterion for safe and effective genetic testing.
However, it is important to point out that our estimates
of clinical validity depend on the appropriateness of the
model, including the multiplicative assumption and the
assumption that the genetic and nongenetic factors and
their interactions correctly reflect the underlying etiology
of the disease. Other important aspects of genetic testing
that we did not examine here include analytical validity,
clinical utility, and ethical, legal, and social implications
(Holtzman et al. 1997, 1998; Barber 1998; Bell 1998).

Finally, we wish to emphasize that using a combi-
nation of risk factors (whether genetic or environmental
or both) to derive a combined prediction probability
requires knowledge of the individual and joint risks.
This implies that one knows not only the risk associated
with each genotype or environmental exposure but also
the strength of each interaction. If such data are lacking,
estimates of summary risks would be incomplete and
possibly misleading. Unfortunately, however, such data
are lacking for most conditions. The clinical and epi-
demiologic communities can contribute to filling these
gaps and improving the prediction of multifactorial dis-
eases by collecting, presenting, and analyzing data on
multiple genetic and environmental factors in ways that
allow the determination of joint risks and interactions.
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Appendix A

GENETIC

TEST

RESULT

NO. OF PEOPLE WHO

Develop the
Disease

Do Not
Develop the

Disease

Allele positive a c
Allele negative b d

Total N1 N2

The positive likelihood ratio (LR�) is a ratio between the probability of allele-positive tests among those who
develop the disease and the probability of allele-positive tests among those who do not develop disease. It can be
calculated as follows:

P(G p 1FD) sensitivity
LR� p p ,—

P(G p 1FD) 1 � specificity

where sensitivity (the probability that people who develop the disease are allele positive) is equal to P(G p
and specificity (the probability that people who do not develop disease are allele negative) is equal to1FD) p a/N1

.
—

P(G p 0FD) p d/N2

The negative likelihood ratio (LR�) is the ratio between the probability of allele-negative tests among those who
develop disease and the probability of allele-negative tests among those who do not develop disease. It can be
calculated as follows:

P(G p 0FD) 1 � sensitivity
LR� p p .—

P(G p 0FD) specificity

Positive predictive value (PPV) is the probability of developing the disease, given an allele-positive result, and is
calculated as

P(G p 1FD)P(D)
PPV p P(DFG p 1) p .— —

P(G p 1FD)P(D) � P(G p 1FD)P(D)

Negative predictive value (NPV) is the probability of not developing the disease, given an allele-negative result,
and is calculated as

— —
P(G p 0FD)P(D)—

NPV p P(DFG p 0) p .— —
P(G p 0FD)P(D) � P(G p 0FD)P(D)

We use positive and negative predictive value and posterior probability of developing disease interchangeably.
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Appendix B

Estimating the Likelihood Ratio from a Case-Control Study

Assuming dichotomous disease outcome ( ) and a logistic model in the population, we can model theD p 0,1
probability of disease for a given panel of genetic tests as (McCullagh and Nelder 1989)

P(DFG) Tln p a � bG . (B1)— pop[ ]P(DFG)

Applying Bayes’s theorem, we have

P(DFG) P(GFD)P(D) P(GFD) P(D)
ln p ln p ln � ln .— — — — —[ ] [ ] [ ] [ ]P(DFG) P(GFD)P(D) P(GFD) P(D)

Therefore, the likelihood ratio is

— —N P(DFG) ND D T ∗ T[ ]ln LR (G) p ln � ln p ln � a � bG (from eq. B1 )pa � bG ,—pop pop popN P(DFG) ND D

where apop is the intercept term in the population logistic model (background disease risk), ND is the number of
people in the population who develop the disease, is the number of people in the population who do not develop—ND

the disease, , and (Albert 1982).∗— —P(D) p N F(N � N ) a p a � ln (N FN )D D D pop pop D D

To prove the validity of estimating likelihood ratio from a case-control study, we introduce the dummy variable
S to indicate whether an individual is selected for the case-control sample and denote the sampling fraction as

and . It is essential that the risk odds ratio in the case-control study estimates the
—

f p P(S p 1FD) f p P(S p 1FD)1 0

risk ratio and the probability of being selected for a sample is independent of genotype in both those with and
without the disease—that is, and . We can compute the

— —
P(S p 1FD,G) p P(S p 1FD) P(S p 1FD,G) p P(S p 1FD)

probability of disease, given a particular set of genetic test results, using a logistic model for the sample as

P(DFG,S p 1) P(DFG)P(S p 1FD)/P(SFG) P(DFG) f1ln p ln p ln � ln (B2)— — — —[ ] [ ] [ ] ( )P(DFG,S p 1) P(DFG)P(S p 1FD)/P(SFG) P(DFG) f0

after cancellation of the denominator. Substitution of equation (B1) into equation (B2) gives

P(DFG,S p 1) f1T Tln p a � bG � ln p a � bG , (B3)— pop CC[ ] ( )P(DFG,S p 1) f0

where . Thus, the logistic model continues to apply in the sample with the same b coefficienta p a � ln (f /f )CC pop 1 0

but with an adjusted (Breslow et al. 1980).∗a p a � ln (f /f )pop 1 0

Similar to the derivation of likelihood ratio estimated using logistic regression in the population, the likelihood
ratio in the case-control study population is found to be

N P(DFG) NCO CO Tln LR (G) p ln � ln p ln � a � bG , (B4)—CC CCN P(DFG) NCA CA

where is the intercept term estimated from a case-control study, as shown in equation (B3).a p a � ln (f /f )cc pop 1 0

Because

—f N /N N N1 CA D D COln p ln p ln � ln , (B5)( )( ) ( ) ( )—f N /N N N0 CO D D CA

substitution of equation (B5) into equation (B4) gives .ln LR (G) p ln LR (G)pop cc
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Variance Estimation of the Likelihood Ratio

From equation (5) in the text and the delta method, the variance of the likelihood ratio with covariates and
interaction (for dichotomous genetic tests and interaction) is given by (Kleinbaum 1998)

T[ ]Var LR(G) pVar (a � b � gX � d)CC

n p1

2p Var (a ) � Var (b ) � X Var (g )� �CC i i i
ip1 ip1

p n p p2 1 2

� Var (d ) � 2 Cov (a ,b ) � 2 X Cov (a ,g ) � 2 Cov (a ,d )� � � �i CC i i CC i CC i
ip1 ip1 ip1 ip1

n p n p p p1 2 1 2

�2 X Cov (b ,g ) � 2 Cov (b ,d ) � 2 X Cov (g ,d )�� �� ��i i i i i i i i
ip1 ip1 ip1 ip1 ip1 ip1

�2 Cov (b ,b ) � 2 Cov (g ,g ) � 2 Cov (d ,d ) , (B6)′ ′ ′�� �� ��i i i i i i′ ′ ′! ! !i i i i i i

where aCC is the intercept of the logistic regression, b is the coefficient of each binary genetic test, X is a vector of
covariates, g is the associated logistic regression coefficient, and d represents the interaction effects of multiple
binary genetic tests. As a general guideline, any two genes in the same pathway would be unlikely to be independent;
if they function in different pathways, one would generally assume that they are independent. To evaluate whether
inclusion of the interaction terms is necessary, one can use likelihood-ratio tests or Wald x2 statistics and associated
P values with respect to a x2 distribution with 1 df (Greenland 1983). Most statistical analysis programs for logistic
regression offer a variance-covariance matrix that can be used to calculate the variance of the likelihood ratio.
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